If it's not what You are looking for type in the equation solver your own equation and let us solve it.
84=10x^2-4x
We move all terms to the left:
84-(10x^2-4x)=0
We get rid of parentheses
-10x^2+4x+84=0
a = -10; b = 4; c = +84;
Δ = b2-4ac
Δ = 42-4·(-10)·84
Δ = 3376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3376}=\sqrt{16*211}=\sqrt{16}*\sqrt{211}=4\sqrt{211}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{211}}{2*-10}=\frac{-4-4\sqrt{211}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{211}}{2*-10}=\frac{-4+4\sqrt{211}}{-20} $
| 4x-1=12+4 | | 3x+x+6+31=0 | | 3x-x-6-31=0 | | -(x+5)-2=-2x-12 | | (3x-31)=(x+6) | | 5+y+1+3y=18 | | 22+1/2x=x | | 2(4z-1)=(3+2) | | -33=b-12 | | x3-5x2-10x+48=0 | | 16x+9x=21.5^2 | | 8/12=18/z-4 | | 5(x-3)=-60 | | 16(x^2)+9(x^2)=21.5^2 | | 1/6x^+4/3x-2/3=0 | | 2(3x-1)+3(x+5)=76 | | 6m+20=-22 | | (16x^2)+(9x^2)=21.5^2 | | 2w=3w=4w | | 3n+12n=8 | | 10/30=6t | | 24/z=6 | | 5n-8n=4n | | 10(s-3)=-199 | | 18.74^2+10.54^2=x | | 6x+8-8=3x | | 90=6(a+8) | | 18.74^2*10.54^2=x | | 3x+5x+7x+9x=360 | | 4x.10x.6x=x | | (16x)^2+(9x)^2=21.5^2 | | 4a-2a=-4 |